Пирамида Хеопса сфокусировала энергию радиоволн в камерах и под основанием

20:54
/
29
/

Физики из петербургского Университета ИТМО численно рассчитали, как пирамида Хеопса рассеивает радиоволны длиной порядка 200–600 метров, и выяснили, что на определенных резонансных частотах полости пирамиды концентрируют электромагнитную энергию. Кроме того, пирамида, стоящая на известняковом плато, фокусирует электромагнитные волны под своим основанием. СтатьяопубликованавJournal of Applied Physics.

Египетские пирамиды окружены множеством мифов и легенд, причем они представляют большой интерес не только для историков и археологов, но и для физиков. Например, в ноябре 2017 года ученые«просканировали»с помощью космических мюоновпирамиду Хеопса— самую крупную из египетских пирамид — и обнаружили над Большой галереей еще одну пустоту длиной около 30 метров, ранее неизвестную. Кратко об открытии ученых можно прочитать в нашейновости, а более подробно — в материале«Разгрузочная камера фараона».

Физики из ИТМО сосредоточились на электромагнитных свойствах пирамиды Хеопса, а именно на ее способности поглощать и отражать излучение. Чтобы проверить эти свойства, ученые построили цифровую трехмерную копию пирамиды и учли, чтодиэлектрическая проницаемостьизвестняковых блоков, из которых сложена пирамида,может изменятьсяв пределах ε = 4–6. Поскольку точную величину проницаемости установить очень сложно, физики выбрали в качестве среднего значения ε = 5 + 0,1i(мнимая часть отвечает за слабое затухание электромагнитных волн внутри вещества). Кроме того, в трехмерной модели учитывалась«камера Царя»— самая большая камера (размером 11×5×11 метров), находящаяся в центре пирамиды. Несмотря на то, что физические размеры камеры много меньше размеров пирамиды, пренебрегать ей при детальном рассмотрении нельзя. Расчеты физики выполнили для свободной пирамиды и пирамиды, стоящей на известняковом плато.

Затем исследователи направили на пирамиду плоскую электромагнитную волну, перпендикулярную ее основанию, и численно рассчиталисечениерассеяния и экстинкции для длин волн из диапазона 200–600 метров. Случаи, когда волна направлена от вершины пирамиды к основанию и от основания к вершине, ученые рассмотрели по отдельности. Чтобы понять, что такое сечение рассеяния, представим себе широкий поток шариков, летящих навстречу прямоугольной коробке ширинойDи высотойH. Большинство шариков пролетит мимо коробки, однако часть из них столкнется с ней и отразится — получится, что коробка «вырезает» из потока шариков полосу площадью σ =D×H. Собственно, эту площадь и называют сечением рассеяния. Чем больше площадь — тем больше вероятность того, что шарики из потока отразятся, поэтому с помощью параметра σ очень удобно описывать процессы столкновения и рассеяния. В случае, когда поток шариков заменяется электромагнитной волной, понятие сечения рассеяния несколько усложняется, однако эта величина по-прежнему описывает вероятность волны отразиться от мишени. Сечение экстинкции определяется практически так же, только в этом случае к процессам рассеяния нужно добавить процессы поглощения волн внутри мишени.

Численные расчеты, основанные науравнениях Максвелла, показали, что оба сечения достигают максимума при длине волны около 230 и 330 метров вне зависимости от направления падающей волны. Это указывает на электромагнитные резонансы внутри пирамиды. Более того, оказывается, что на резонансной длине волны напряженность электрического поля внутри полости резко вырастает, то есть полости концентрируют электрическуюэнергию. Аналогичные эффекты для магнитного поля не наблюдались во всем диапазоне длин волн.


Зависимость от длины волны сечения рассеяния (синий) и экстинкции (зеленый) для случая, когда волна направлена от вершины к основанию (слева) и наоборот (справа). Пирамида находится в пустом пространстве



Напряженность электрического (сверху) и магнитного (снизу) поля внутри пирамиды для разных длин волн. Случай (а) с первой картинки

Напряженность электрического (сверху) и магнитного (снизу) поля внутри пирамиды для разных длин волн. Случай (b) с первой картинки


Если же пирамида стояла на известняковом плато, поведение электромагнитных волн изменялось. В этом случае пирамида не просто искажала волны, но фокусировала их и собирала большую часть электромагнитной энергии под основанием. Более того, теперь сечения имели всего один максимум на длине волны около 250 метров. При этом полости внутри пирамиды по-прежнему продолжали концентрировать энергию.



Напряженность электрического (сверху) и магнитного (снизу) поля внутри пирамиды для разных длин волн. Пирамида стоит на известняковой подложке.


Более подробная картина напряженности электрического поля для длины волны λ = 200 метров. Учтены «Камера царя» (сверху), «Камера царицы» (посередине) и «погребальная яма» (снизу)

Чтобы независимо проверить полученные результаты, физики использовали методдискретного дипольного приближения. В этом методе физическому объекту сопоставляется система более простых источников излучения —мультиполей, — которая ведет себя во внешнем электромагнитном поле абсолютно так же, как исходный объект. Например, электрический диполь — это система двух зарядов, равных по модулю, противоположных по знаку и отдаленных друг от друга на небольшое расстояние. Поскольку рассматриваемые длины волн превышали характерные размеры пирамиды (порядка 100 метров), ученые работали вдлинноволновом приближении. Это заметно упростило теоретические расчеты и позволило связать оба резонанса с физическими характеристиками пирамиды. В случае «свободной» пирамиды первому резонансу (длина волны 230 нанометров) отвечает вклад от дипольных моментов тела, а второй резонанс возникает из-за более высоких мультипольных моментов. В случае пирамиды, стоящей на известняковом плато, резонанс определяется как дипольными, так и мультипольными моментами. Кроме того, с помощью метода мультипольных приближений можно объяснить, почему электромагнитная энергия концентрируется внутри полостей.


В будущем ученые планируют использовать полученные результаты для разработки наночастиц, с помощью которых можно управлять видимым светом. В самом деле, качественно такие частицы будут вести себя так же, как пирамида, если изменить длину падающих волн пропорционально размерам рассеивающего объекта — следовательно, они так же будут фокусировать излучение под основанием и подавлять отраженные в обратном направлении волны.

Ученые из ИТМО не первыми обратили внимание на необычные оптические свойства пирамидальных конструкций. Например, в мае 2017 года ученые из Национальной лаборатории имени Лоуренса в Беркли научились строить зонды, на поверхности которых находится нанометровая позолоченная пирамида, ипоказали, что с помощью таких зондов можно преодолеть дифракционный предел — получить изображения с разрешением около 80 нанометров, много меньшим длины волны видимого излучения.


ИСТОЧНИК:

+5
Нет комментариев. Ваш будет первым!